Cis and Enantioselective Synthesis of 2-Oxazoline-4-carboxylates through Lewis Acid-Catalyzed Formal [3 + 2] Cycloaddition of 5-Alkoxyoxazoles with Aldehydes

Hiroyuki Suga,,,t K osei Ikai, ${ }^{\ddagger}$ and Toshikazu Ibata ${ }^{\ddagger}$
Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, J apan, and Department of Chemistry, Graduate School of Science, Osaka Úniversity, Toyonaka, Osaka 560-0043, J apan

Received March 24, 1999

Abstract

In the presence of 2 equiv of (R)-methylaluminum β-binaphthoxide, which was prepared from (R)2, 2^{\prime}-di hydroxy-1, 1^{\prime}-binaphthyl and trimethylaluminum, the reaction of 5-methoxy-2-(p-methoxyphenyl)oxazole with benzaldehyde in MeCN gave the corresponding 2-oxazoline-4-carboxylate in high yield (89%) with high stereoselectivity (cis/trans = 92:8) and high enantioselectivity (88% ee (cis)). Under the same conditions, enantioselectivity of the cis products obtained from the reaction with para-substituted benzaldehydes was moderate. On the other hand, formal [3+2] cycloaddition of 5-methoxy-2-(o-methoxyphenyl)oxazole with benzaldehyde or para- and meta-substituted benzaldehydes successfully proceeded only in the presence of $30 \mathrm{~mol} \%$ of (R)-methylaluminum β-binaphthoxide, which was prepared from (R)-2, 2^{\prime}-dihydroxy-1,1'-binaphthyl and $1.1-1.05$ equiv of trimethylaluminum, to give cis-2-oxazoline-4-carboxylates in high enantioselectivity (up to 90\% ee).

Introduction

2-Oxazoline-4-carboxylates are versatile building blocks in organic synthesis as masked β-hydroxy amino acids and 2 -amino-1,3-diols. 5-Substituted 2 -oxazoline-4-carboxylates have cis and trans isomers at the relative configuration of the 4 - and 5 -positions, and the transformation of cis and trans isomers gives erythro- and threo-β-hydroxy amino acids or 2-amino-1,3-diols, respectively. Furthermore, the importance of enantioselective synthesis of 2-oxazoline-4-carboxylates in modern synthetic methodology is apparent from the numerous synthetic applications using 2-oxazoline-4-carboxylates as the building blocks. ${ }^{1-5}$ Trans isomers of 5-substituted 2-oxazoline4 -carboxylate have been selectively synthesized by the aldol reaction of isocyanoacetates with aldehydes under thermodynamic control. ${ }^{1-3}$ For the enantioselective synthesis of trans-2-oxazol ine 4 -carboxylates, ferrocenyl phos-phine-gold(I) complexes were found to be the most effective catalyst in the reaction of isocyanoacetate with aldehydes. ${ }^{3}$ However, the enantioselective synthesis of cis-2-oxazol ine-4-carboxylates has not been reported yet. ${ }^{5}$ Recently, we reported that regio- and stereoselective formal [$3+2$] cycloaddition of 2-aryl-5-methoxyoxazol es with aldehydes catalyzed by a stoichiometric amount of

[^0]racemic methylaluminum β-binaphthoxide gave 2 -oxazo-line-4-carboxylates with high cis selectivity. ${ }^{6}$ We also showed that tin(IV) chloride-catalyzed highly diastereosel ective formal cycloaddition of 5-methoxyoxazoles with chiral β-alkoxyaldehydes is extremely useful for the synthesis of optically pure 2-amino-1,3,4-triols. ${ }^{7}$ In this paper, we provide a full account of our investigation of the highly enantioselective synthesis of cis-2-oxazoline-4-carboxylates in the formal $[3+2]$ cycloaddition of 2-aryl-5-methoxyoxazoles with aldehydes catalyzed by chiral methylaluminum β-binaphthoxide. ${ }^{8}$

Results and Discussion

Reaction of Oxazole la with Benzaldehyde in the

 Presence of a Chiral Lewis Acid. The reaction of oxazole la with benzaldehyde was carried out under several conditions in the presence of chiral catalyst A, which was prepared by mixing (R)- or (S)-2,2'-dihydroxy-1,1'-binaphthyl ((R)- or (S)-BINOL) and trimethylaluminum (hexane solution) in situ (Scheme 1 and Table 1). We first examined the reaction under the previously reported optimum conditions for the stereoselective synthesis of racemic cis-2-oxazoline-4-carboxylates (Table 1, entries 1, 2, and 4). ${ }^{6}$ After isolation of cis-2-oxazoline-[^1]Table 1. Reaction of Oxazole 1a with Benzaldehyde ${ }^{\text {a }}$

entry	catalyst (mol \%)	PhCHO, equiv	solvent	T, ${ }^{\circ} \mathrm{C}$	time, h	yield, \%	cis/trans	cis, \% ee ${ }^{\text {b }}$ (confign) ${ }^{\text {c }}$	trans, \% ee ${ }^{\text {b }}$
1	(R)-BINOL $+\mathrm{AlMe}_{3}(100)$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$	0	122	57	87:13	$55(4 \mathrm{~S}, 5 \mathrm{~S})^{\text {d }}$	13
2	(S)-BINOL $+\mathrm{AlMe}_{3}(100)$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$	0	122	52	88:12	55 (4R,5R)	12
3	(S)-BINOL + $\mathrm{AlMe}_{3}(200)$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$	0	123	64	81:19	70 (4R,5R) ${ }^{\text {e }}$	5
4	(R)-BINOL $+\mathrm{AlMe}_{3}(200)$	1	MeCN	rt	75	40	60:40	$90(4 \mathrm{~S}, 5 \mathrm{~S})$	2
5	(R)-BINOL $+\mathrm{AlMe}_{3}(200)$	1	MeCN	0	76	45	87:13	86 (4S,5S)	2
6	(R)-BINOL $+\mathrm{AlMe}_{3}(200)$	3	MeCN	-10	89	81	92:8	$88(4 \mathrm{~S}, 5 \mathrm{~S})^{\text {f }}$	8
7	(R)-BINOL + $\mathrm{AlMe}_{3}(50)$	10	MeCN	-10	116	89	96:4	75 (4S,5S)	55
8	(R)-BINOL $+\mathrm{AlMe}_{3}(30)$	10	MeCN	-10	163	70	95:5	65 (4S,5S)	36
9	(R)-BINOL $+\mathrm{AlMe}_{3}(30)$	10	MeCN	-10	259	31	95:5	$82(4 \mathrm{~S}, 5 \mathrm{~S})$	$N{ }^{\text {h }}$
10	(R)-BINOL $+\mathrm{AlMe}_{3}(30)$	10	MeCN	5	39.5	84	95:5	67 (4S,5S)	$N{ }^{\text {h }}$
11	(R)-BINOL $+\mathrm{AlMe}_{3}$ (30)	10	MeCN	rt	46	82	93:7	$74(4 \mathrm{~S}, 5 \mathrm{~S})$	32

${ }^{\text {a }}$ The reaction was carried out in the presence of catalyst A, which was prepared from MesAl and Chiral BINOL. ${ }^{b}$ Determined by HPLC analysis using Daicel Chiralpak AS (hexane/i-PrOH $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}$). c See the text for determination of the configuration. ${ }^{d}[\alpha]^{21} \mathrm{D}=+144.5^{\circ}$ (c 1.20, THF). ${ }^{\mathrm{e}}[\alpha]^{19} \mathrm{D}=-186.4^{\circ}$ (c 1.20, THF). ${ }^{\mathrm{f}}[\alpha]_{\mathrm{D}}{ }^{26}=+215.2^{\circ}$ (c 1.23, THF). ${ }^{\mathrm{g}}$ A solution of oxazole la was added over a period of 115 h and then stirred for 25 h . ${ }^{\mathrm{h}}$ The \% ee was not determined.

Scheme 1

4-carboxylate $\mathbf{2 a}$ by column chromatography, the enantiomeric excess was determined by HPLC analysis using a Daicel Chiralpak AS column. Moderate enantioselectivity (55% ee) for cis-2a was observed under the conditions by using 1 equiv of chiral catalyst A in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ MeCN (1:1) at $0{ }^{\circ} \mathrm{C}$ (Table 1, entries 1 and 2). When 2 equiv of catalyst A was used in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ (1:1), the enantiosel ectivity increased to 70% ee (Table 1, entry 3). Using only MeCN as the solvent showed higher enantioselectivity than that in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ (1:1) (Table 1, entries $4-6)$. Under the optimum conditions at $-10^{\circ} \mathrm{C}$ in the presence of 2 equiv of catalyst A, high yield (89\%), high stereoselectivity (cis/trans = 92:8), and high enanti oselectivity (88\% ee (cis)) were obtained (Table 1, entry 6). It is also interesting to note that the degree of the steroselectivity (cis/ trans $=98: 2$) and chemical yield (79\%) in the presence of racemic catalyst A^{6} were not inconsistent with those (cis/trans $=87: 13-88: 12$, 52$57 \%$ yield) obtained in the presence of chiral catalyst A under the same conditions ($0^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$) (Table 1 , entries 1 and 2). In the presence of 10 equiv of benzaldehyde in MeCN, the reaction proceeded smoothly using 30-50 mol \% of chiral catalyst A. However, using catalytic amount of catalyst A resulted in lower enantioselectivity compared with that obtained using 2 equiv of catalyst A (Table 1, entries 7, 8, 10, and 11). Slow addition of a solution of oxazole la in MeCN also did not give a satisfactory result in terms of chemical yield (Table 1 , entry 9).

Scheme 2

Reaction of Oxazole 1a with Para-Substituted Benzaldehyde in the Presence of Catalyst A. The reactions of oxazole $\mathbf{1} \mathbf{a}$ with some para-substituted benzaldehydes were carried out under the conditions using 2 equiv of catalyst A in MeCN (Scheme 2, Table 2, entries 1, 4, and 8). Although these reactions proceeded in good stereoselectivity (cis/trans $=96: 4-82: 18$), the enantiomeric excess of the cis products was moderate. To improve the enantioselectivity in the reaction with substituted benzaldehydes and to determine the amount of the catalyst, the effects of the position and number of the methoxy substituents on the 2-aryl group were investigated.

Reaction of Oxazoles 1a-d with Benzaldehyde in the Presence of Catalyst A. In the preliminary experiment, 5-methoxy-2-(o-methoxyphenl)oxazole $\mathbf{1 b}$ reacted smoothly with benzaldehyde by using $30 \mathrm{~mol} \%$ of catalyst A to give 2-oxazoline-4-carboxylate $\mathbf{2 b}$ (cis/trans $=85: 15$) in 79% chemical yield and 85% ee of cis-2b. However, when the reaction was repeated several times, it was seen that it did not have reproducibility in terms of chemical yield and enantioselectivity. This might be attributed to the slight difference in the ratio of AlMe_{3} and chiral BINOL in preparing the catalyst. The catalyst was then prepared by mixing AlMe_{3} and (R)-BINOL in four different ratios from 1.2:1.0 to 1.0:1.2, and the reaction of oxazole $\mathbf{1 b}$ with benzal dehyde was carried out (Table 3, entries 5-8). The use of a slight excess of AlMe_{3} (AIMe3/BINOL $=1.05: 1.0-1.1: 1.0$) showed high yield and high enantioselectivity of cis-2-oxazoline-4-carboxylate 2b (Table 3, entries 6 and 7). ${ }^{9}$ The reaction under these

Table 2. Reaction of Oxazoles 1a-c with Substituted Benzaldehydes ${ }^{\text {a }}$

entry	oxazole	aldehyde	T, ${ }^{\circ} \mathrm{C}$	time, h	product	yield, \%	cis/trans	cis, \% ee ${ }^{\text {b }}$	trans, \% ee ${ }^{\text {b }}$
$1 \mathrm{f}, \mathrm{g}$	1a	p- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	-10	20	3a	81	82:18	$73^{\text {d }}$	$20^{\text {d }}$
2	1b	p- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	-10	21	3b	83	43:57 (54:46) ${ }^{\text {c }}$	$76^{\text {d }}$	$31^{\text {d }}$
3^{f}	1c	p- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	70	3c	74	88:12	$75^{\text {d }}$	$25^{\text {d }}$
$4^{\text {f,g }}$	1a	p- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	-10	53	4a	93	87:13	51	2
5	1b	p- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	24	4b	89	87:13	87	13
6	1b	p-CNC6 $\mathrm{H}_{4} \mathrm{CHO}$	5	24	5b	52	71:29 (82:18) ${ }^{\text {c }}$	$76^{\text {d }}$	$5^{\text {d }}$
$7{ }^{\text {f }}$	1c	$\mathrm{p}-\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	75	5c	60	90:10	$75^{\text {d }}$	$10^{\text {d }}$
8f,g	1a	$\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}^{\text {h }}$	-10	168	6a	78	96:4	63	31
9	1b	$\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	43	6b	72	88:12	84	9
10	1b	$\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	rt	70	7b	57	54:46	89	46
$11^{\text {f }}$	1a	$\mathrm{m}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	15	8a	89	90:10	82	10
12	1b	$\mathrm{m}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	15	8b	85	73:27	84	11
13^{f}	1a	$\mathrm{m}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	42	9a	75	91:9	78	23
14	1b	$\mathrm{m}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	42	9b	82	83:17	84	ND ${ }^{\text {e }}$
15^{f}	1a	$\mathrm{m}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	117	10a	61	93:7	81	25
16	1b	$\mathrm{m}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	117	10b	51	88:12	88	ND ${ }^{\text {e }}$
$17^{\text {f }}$	1 a	$\mathrm{m}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	45	11a	66	97:3	78	33
18	1b	$\mathrm{m}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5	45	11b	70	87:13	90	29

${ }^{\text {a }}$ The reaction was carried out in MeCN in the presence of catalyst A, which was prepared from (R)-BINOL and Me3Al in a ratio of 1:1.05. ${ }^{\text {b }}$ Determined by HPLC analysis using Daicel Chiralpak AS (hexanefi-PrOH $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}$). ${ }^{\text {c }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis before chromatographic separation. ${ }^{\text {d }}$ Determined by ${ }^{1}$ H NMR analysis using (R)-BINOL as shift reagent. e The \% ee was not determined. ${ }^{\dagger}$ Catalyst A was prepared from (R)-BINOL and $\mathrm{Me}_{3} \mathrm{Al}$ in a ratio of 1:1. 9 Reactions were carried out with 3 equiv of aldehydes in the presence of 2 molar amounts of catalyst A in MeCN. ${ }^{h}$ Five equiv of $\mathrm{p}-\mathrm{MeC}{ }_{6} \mathrm{H}_{4} \mathrm{CHO}$ was used.

Table 3. Reaction of Oxazoles 1a-d with Benzaldehyde ${ }^{\text {a }}$

entry	oxazole	catalyst, (R)-BINOL/AIMe3	T, ${ }^{\circ} \mathrm{C}$	time, h	product	yield, \%	cis/trans	cis, \% ee ${ }^{\text {b }}$	trans, \% ee ${ }^{\text {b }}$
1	1a	1.2:1	5	72	2a	90	96:4	79	41
2	1a	1:1	5	39.5	2a	84	95:5	67	ND ${ }^{\text {c }}$
3	1a	1:1.1	5	23	2a	85	92:8	65	27
4	1a	1:1.2	5	23	2a	85	92:8	69	25
5	1b	1.2:1	5 tort	68	2b	16	84:16	66	ND ${ }^{\text {c }}$
6	1b	1:1.05	5	27	2b	92	85:15	84	15
7	1b	1:1.1	5	49	2b	82	83:17	87	13
8	1b	1:1.2	5	23	2b	90	81:19	77	18
9	1c	1.2:1	rt	40	2 c	35	96:4	83	54
10	1c	1:1	rt	42	2 c	64	94:6	84	ND ${ }^{\text {c }}$
11	1c	1:1.1	rt	46	2 c	63	90:10	70	27
12	1c	1:1.2	rt	40	2 c	63	92:8	70	33
13	1d	1:1	5	50	2d	83	59:41	80	21

${ }^{\text {a }}$ The reaction was carried out in MeCN in the presence of catalyst A , which was prepared from $\mathrm{Me}_{3} \mathrm{Al}$ and (R)-BINOL in the ratio listed in the table. ${ }^{\text {b }}$ Determined by HPLC analysis using Daicel Chiralpak AS (hexane/i-PrOH $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}$). ${ }^{\text {c }}$ The $\%$ ee was not determined.
conditions also had reproducibility in terms of yields and enantioselectivity. On the other hand, utilization of 1.2 equiv of (R)-BINOL in preparation of the catalyst showed lower yield and enantioselectivity of cis adduct $\mathbf{2 b}$. In the case of reactions of oxazole $\mathbf{1 a}$ and $\mathbf{1 c}$, however, the use of a slight excess (1.2 equiv) of (R)-BINOL in preparation of the catalyst showed slightly better enantioselectivity rather than by using a slight excess (1.2 equiv) of $\mathrm{Me}_{3} \mathrm{Al}$ (Table 3, entries 1-4 and 9-12).

2-(2,6-Dimethoxyphenyl) oxazole 1d al so underwent the formal [3 + 2] cycloaddition with benzaldehyde to give the corresponding products in high yield and with good enantioselectivity of cis-oxazoline. However, the reaction showed lower stereoselectivity (cis/trans = 59:41).

Reaction of Oxazoles 1a,b,d in the Presence of Catalyst B, C, or D. In the presence of the catalysts having a phenyl (catalyst B) or a triphenysilyl group (catalyst C) ${ }^{10}$ on the 3-position and a bromo group on the

[^2]6-position (catalyst D) of chiral BINOL moiety, the reactions of oxazoles $\mathbf{1 a}, \mathbf{b}, \mathbf{d}$ with benzaldehyde were also carried out (Figure 1, Table 4, entries 2, 4-6, and 8). These catalysts, including catalyst $C,{ }^{10}$ which is one of the best aluminum Lewis acids for asymmetric synthesis, did not exhibit better enantioselectivity than that in the presence of catalyst A. In the case of reactions using catalyst B, trans-2-oxazoline-4-carboxylates were predominantly produced, probably due to inhibition of the transition state that produces cis products by steric interaction of the 3-phenyl group (Table 4, entries 2, 4, and 8). Generally, the enantiomeric excess of minor trans-2-oxazoline-4-carboxylates by the catalyst A-catalyzed reaction was low. ${ }^{11}$ However, in the reaction of oxazole 1a in the presence of catalyst B, the highest enantioselectivity of trans-oxazoline was obtained (Table 4, entry 2).

[^3]Table 4. Reaction of Oxazoles $\mathbf{l a , b , d}$ with Benzaldehyde by Using (\mathbf{R})-binol Derivatives ${ }^{\mathbf{a}}$

entry	oxazole	catalyst (Ln/AIMe3)	T, ${ }^{\circ} \mathrm{C}$	time, h	product	yield, \%	cis:trans	cis, \% ee ${ }^{\text {b }}$	trans, \% ee ${ }^{\text {b }}$
1	1a	A (1:1)	5	39.5	2a	84	95:5	67	ND ${ }^{\text {c }}$
2	1a	B (1:1)	5	25	2a	89	39:61	33	71
3	1b	A (1:1.05)	5	27	2b	92	85:15	84	15
4	1b	B (1:1.05)	5	21.5	2b	83	29:71	52	43
5	1b	C (1:1.05)	5	22	2b	87	66:34	64	54
6	1b	D (1:1.05)	5	113.5	2b	68	87:13	50	10
7	1d	A (1:1)	5	50	2d	83	59:41	80	21
8	1d	B (1:1)	5	23	2d	80	16:84	64	45

${ }^{\text {a }}$ The reaction was carried out in MeCN in the presence of the catalyst listed in the table. ${ }^{b}$ Determined by HPLC analysis using Daicel Chiralpak AS (hexane/i-PrOH = 9:1, flow $0.5 \mathrm{~mL} / \mathrm{min}$). ${ }^{\text {c }}$ The \% ee was not determined.

Catalyst A:

(R)-(+)-BINOL

Catalyst B

$+\quad \mathrm{Me}_{3} \mathrm{Al}$

Catalyst \mathbf{C} :

$+\quad \mathrm{Me}_{3} \mathrm{Al}$

Catalyst D:

Figure 1. Catalysts A-D.
Reaction of Oxazoles 1a-c with Substituted Benzaldehyde in the Presence of Catalyst A. As described above, the highest enantioselectivity of cis-2-oxazoline-4-carboxylate cis-2b was obtained by the reaction of oxazole $\mathbf{1 b}$ with benzaldehyde under the conditions in MeCN in the presence of about 30% of catalyst A, which was prepared by mixing AIMes and (R)-BINOL in a $1.1-$ 1.05:1.0 ratio (Table 3, entries 6 and 7). The reactions of oxazole $\mathbf{1 b}$ with several kinds of para-substituted benzaldehydes were preformed under similar conditions (Table 2, entries 2, 5, 6, 9, and 10). In all cases, good enantiomeric excess of cis-2-oxazolines was obtained
independent of the electronic character of the para substituents of the benzal dehyde derivatives. Oxazole 1c also underwent formal $[3+2]$ cycloaddition with electrondeficient para-substituted benzaldehydes to give cisoxazol ine-4-carboxylates in high cis and good enantioselectivity. In the reactions of oxazoles $\mathbf{l a}$ and $\mathbf{1 b}$ with several kinds of meta-substituted benzaldehydes, the enantiomeric excess and cis selectivity of cis-oxazolines were also very high independent of the electronic character of the substituents (Table 2, entries 11-18).

Absolute Configuration of cis-2-Oxazoline-4-carboxylate. The absol ute configuration of cis-2-oxazol ine-4-carboxylate cis-2a was determined by the optical rotation after conversion to threo- β-phenylserine. Thus, 2-oxazoline cis-2a (88% ee) was first converted to 2 -oxazoline trans-2a(70% ee) by treatment of triethylamine in MeCN under reflux in 73% yield. The resulting trans2a was hydrolyzed by concentrated hydrochloric acid at $50^{\circ} \mathrm{C}$ in MeOH and then 6 N hydrochloric acid at $80-$ $100^{\circ} \mathrm{C}$. After treatment with Amberlite IRA-120B (H^{+}), threo- β-phenylserine was obtained in 50% overall yield. By comparing the optical rotation ($[\alpha]^{18} \mathrm{D}=+29.9^{\circ}$ (c 2.0, $6 \mathrm{~N} \mathrm{HCl})$) of the synthesized threo β-phenylserine with that of the natural threo- β-phenylserine ($[\alpha]^{18} \mathrm{D}=-50.2$ $\left.\pm 2^{\circ}(\mathrm{c} 2.0,6 \mathrm{~N} \mathrm{HCl})\right)^{12}$ the configuration of cis-2a was determined as (4S,5S) (Scheme 3).
The Mechanism for Cis and Enantioselectivity. It has been proposed that the formal [$3+2$] cycloaddition of oxazoles with tetracyanoethylene, ${ }^{13} 4$-phenyl- $3 \mathrm{H}-1,2,4$ -triazole-3,5-(4H)-dione, ${ }^{14 a}$ diethyl azodicarboxylate, ${ }^{14 b}$ nitrosobenzene, ${ }^{15}$ and diethyl oxomalonate ${ }^{16}$ proceeds through a stepwise pathway involving zwitterionic intermediates. According to an interpretation of the stepwise pathway, the Lewis acid activates the aldehydes by accelerating the initial attack of the oxazoles on the al dehydes in the reaction of 5-alkoxyoxazoles with aldehydes. In the catalyst A-catalyzed reaction of oxazole la-c with benzaldehyde derivatives, a stable 1:1 complex of catalyst A with aldehydes may be the initial intermediate of the reaction. On the basis of the structure of this stable complex π, we anticipate an antiperiplanar or synclinal approach of the C4-C5 double bond of the oxazoles to the carbonyl group of complex π (Figure 2). In the reface attack on complex π, the sterically lesshindered approach X , which showed the approach of

Scheme 3

Approach Y

Figure 2. Approaches X, X^{\prime}, Y, and Y^{\prime}.

Figure 3. Postulated transition state.
oxazole $\mathbf{1 b}$ as exemplified bel ow, seems to be the most favorable. Approach X corresponds to an antiperiplanar attack of the C4-C5 double bond of the oxazoles on the carbonyl group of the aldehyde as shown in transition state model T-A, and this approach gives (4S,5S)-cis-2-oxazoline-4-carboxylates through a stepwise pathway involving zwitterionic intermediate I (Figure 3). Approaches such as X^{\prime} are unfavorable because of steric

[^4]
hindrance between the naphthyl moiety and aryl groups of the oxazoles. In the case of si-face attack, antiperiplanar approaches Y and Y^{\prime} seem to be much less favorable than approach X because of the steric repulsion between the methyl group of the aluminum center and the oxazoles (Figure 2).

Conclusion

We have developed new methodology for the cis and enantioselective synthesis of synthetically useful 2-ox-azoline-4-carboxylates by the methylaluminum β-binaph-thoxide-catalyzed reaction of 2-aryl-5-alkoxyoxazoles with substituted benzaldehydes. The above-described methodology has the advantage of high enantioselectivity and cis selectivity over previously reported methods for the synthesis of 2-oxazoline-4-carboxylates. Normally, the use of Lewis acids as catalysts in reactions of heterocyclic compounds is expected to have limitations in the activation and control of the reactions because the Lewis acids may form complexes with heterocyclic compounds. We believe that our success in the stereo- and enantiocontrol of formal [3+2] cycloaddition of 5-alkoxyoxazoles in the present work presents a new guiding principle for the use of Lewis acids for the reaction of heterocyclic compounds.

Experimental Section

General Methods. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 270 and 67.8 MHz , respectively. Chemical shifts are expressed in parts per million downfield from tetramethylsilane as an internal standard. Mass spectra were recorded at 70 eV with a direct inlet. For preparative column chromatogtaphy, Wakogel C-300 and silica gel 60 (Merck) were employed. Medium-pressure liquid chromatography was carried out using a column packed with silica gel 60 (Merck, size $0.040-0.063 \mathrm{~mm}$). All reactions were carried out under an argon atmosphere in dried glassware.
Materials. MeCN and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purified by the method repored previously. ${ }^{6,7}$ 5-Alkoxy-2-aryloxazoles (1a-d) were
synthesized from glycin methyl ester hydrochloride by the method described in the literature. ${ }^{17}$

2-(p-Methoxyphenyl)-5-methoxyoxazole (1a): pale yelIow crystals (benzene-hxane); mp 80.5-82.2 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1622 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.84(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 6.15(1 \mathrm{H}$, s), $6.93(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.6 \mathrm{~Hz}, 1.7 \mathrm{~Hz}), 7.80(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.6 \mathrm{~Hz}$, 1.7 Hz). Anal. Cal cd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 64.38 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.83$. Found: C, 64.24; H, 5.49; N, 6.78.

2-(o-Methoxyphenyl)-5-methoxyoxazole (1b): col orless crystals ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); mp $66.4-69.6{ }^{\circ} \mathrm{C}$; IR (KBr) 1614 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.94(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 6.25(1 \mathrm{H}$, s), $6.99-7.04(2 \mathrm{H}, \mathrm{m}), 7.37(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.9 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1.7$ $\mathrm{Hz}), 7.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}, 1.7 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11^{-}}$ $\mathrm{NO}_{3}: \mathrm{C}, 64.38 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.83$. Found: C, $64.44 ; \mathrm{H}, 5.52 ; \mathrm{N}$, 6.76.

2-(3,4,5-Trimethoxyphenyl)-5-methoxyoxazole (1c): pale yellow crystals (benzenehexane); mp $107.2-109.8^{\circ} \mathrm{C}$; IR (KBr) $1618 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.88(3 \mathrm{H}, \mathrm{s}), 3.92(6 \mathrm{H}, \mathrm{s}), 3.95$ $(3 \mathrm{H}, \mathrm{s}), 6.18(1 \mathrm{H}, \mathrm{s}), 7.15(2 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 58.86; H, 5.70; N, 5.28. Found: C, 58.93; H, 5.75; N, 5.29.

2-(2,6-Dimethoxyphenyl)-5-methoxyoxazole (1d): colorless crystals (benzene-hexane); mp 84.9-86.6 ${ }^{\circ} \mathrm{C}$ (from benzene-hexane); IR (KBr) $1615 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.80$ $(6 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 6.25(1 \mathrm{H}, \mathrm{s}), 6.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$, $7.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=56.1,58.3,98.9$, 103.8, 106.9, 131.9, 147.4, 160.0, 161.1. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13}$ NO_{4} : C, 61.27; H, 5.57; N, 5.95. Found: C, $61.52 ; \mathrm{H}, 5.62 ; \mathrm{N}$, 5.92 .

Typical Experimental Procedure for the Reaction of Oxazoles 1b with Benzaldehyde or Substituted Benzaldehyde in the Presence of a Catalytic Amount of Catalyst A. To a solution of (R)-2,2'-dihydroxy-1,1'-binaphthyl (85.9 $\mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ was added a 1.05 M hexane solution of $\mathrm{Me}_{3} \mathrm{Al}(0.30 \mathrm{~mL}, 0.315 \mathrm{mmol})$, and the resulting solution was stirred at room temperature for 1 h . After the mixture was cooled to $-20^{\circ} \mathrm{C}$, a solution of oxazole $\mathbf{1 b}(0.205$ $\mathrm{g}, 1.0 \mathrm{mmol}$) and benzaldehyde or substituted benzal dehyde (10.0 mmol) in MeCN (6 mL) was added. The mixture, after being stirred at the temperature for the time cited in Tables 2 and 3, was quenched with a saturated solution of NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$, the separated organic layer was dried over anhydrous MgSO_{4}, and the solvent was removed under reduced pressure. The residue was chromatographed over silica gel using hexanesehtyl acetate as an eluent to give 2-oxazoline-4-carboxylate $\mathbf{2 b} \mathbf{- 1 1 b}$. The cis/ trans ratio was evaluated on the basis of the ${ }^{1} \mathrm{H}$ NMR spectrum or from the amount of the products after separation. The enantiomeric exess was determined by HPLC analysis (Dicel Chiral pak AS, hexane-iPrOH, $9 / 1 \mathrm{v} / \mathrm{v}$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$) or by ${ }^{1} \mathrm{H}$ NMR analysis using (R)-2, 2^{\prime}-di hydroxy-1,1'-binaphthyl as shift reagent after separation of cis product.

Spectroscopic data of cis- and trans-2-oxazoline-4-carboxylates $\mathbf{2 a}, \mathbf{3 a}, \mathbf{4 a}$, and $\mathbf{6 a}$ were previously reported. ${ }^{6}$

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-phenyl-cis-2-ox-azoline-4-carboxylate (cis-2a): $[\alpha]^{26} \mathrm{D}=+215.2^{\circ}$ (c 1.23, THF), 88\% ee.

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-(p-nitrophenyl)-cis-2-oxazoline-4-carboxylate (cis-3a): $[\alpha]^{28} \mathrm{D}=+168.2^{\circ}$ (c $\left.1.01, \mathrm{CHCl}_{3}\right), 73 \%$ ee.

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-(p-chlorophen-yl)-cis-2-oxazoline-4-carboxylate (cis-4a): $[\alpha]^{28}{ }_{\mathrm{D}}=+64.4^{\circ}$ (c $0.86, \mathrm{CHCl}_{3}$), 51% ee.

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-(p-tolyl)-cis-2-oxazoline-4-carboxylate (cis-6a): $[\alpha]^{28} \mathrm{D}=+75.5^{\circ}$ (c 0.98, $\left.\mathrm{CHCl}_{3}\right), 63 \%$ ee.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-phenyl-cis-2-ox-azoline-4-carboxylate (cis-2b): pale yellow viscous oil; $[\alpha]^{25}$ D $=+241.4^{\circ}$ (c 1.06, THF), 85% ee; IR (KBr) 1739, $1628 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.23(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 5.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 10.9 Hz), $5.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 7.30-7.36(9 \mathrm{H}, \mathrm{m})$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 311.1158$, found 311.1183.

[^5]Methyl (4S,5S)-2-(3,4,5-trimethoxyphenyl)-5-phenyl-cis-2-oxazoline-4-carboxylate (cis-2c): colorless prisms (ethyl acetate-hexane); mp 126.1-129.1 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1748, 1640 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.23(3 \mathrm{H}, \mathrm{s}), 3.92(9 \mathrm{H}, \mathrm{s}), 5.30(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 7.30-7.36(7 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.68$ (q), 56.33 (q), 60.96 (q), 74.16 (d), 83.04 (d), 105.97 (d), 126.37 (d), 128.30 (d), 122.01 (s), 135.90 (s), 141.49 (s), 153.15 (s), 166.42 (s), 169.52 (s); MS m / z (rel intensity) 371 ($\mathrm{M}^{+}, 72$), 312 (77), 265 (50), 195 (base peak), 119 (28), 91 (20). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{6}: \mathrm{C}, 64.68$; H, 5.70; N, 3.77. Found: C, 64.62; H, 5.76; N, 3.76.

Methyl (4S,5S)-2-(2,6-dimethoxyphenyl)-5-phenyl-cis-2-oxazoline-4-carboxylate (cis-2d): colorless needles (ben-zene-hexane); $\mathrm{mp} 117.7-119.4^{\circ} \mathrm{C}$; $[\alpha]^{23}{ }_{\mathrm{D}}=+129.9^{\circ}$ (c 0.51 , CHCl_{3}), >98\% ee after recrystallization; IR (KBr) 1753, 1670 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.23(3 \mathrm{H}, \mathrm{s}), 3.89(6 \mathrm{H}, \mathrm{s}), 5.38(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 5.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 7.31-7.49(8 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR (CDCl 3) $\delta 51.6$ (q), 56.1 (q), 74.2 (d), 82.6 (d), 103.9 (d), 106.9 (s), 126.9 (d), 128.0 (d), 128.5 (d), 132.0 (d), 136.4 (s), 159.1 (s), 163.6 (s), 169.5 (s). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 66.85; H, 5.61; N, 4.10. Found: C, 66.50; H, 5.72; N, 4.11.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(p-nitrophenyl)-cis-2-oxazoline-4-carboxylate (cis-3b): col orless sol id (ben-zene-hexane); mp $136.6-139.5^{\circ} \mathrm{C}$; $[\alpha]^{23} \mathrm{D}=+124.3^{\circ}$ (c 0.48 , CHCl_{3}), 80% ee after recrystallization; IR (KBr) 1736, 1639, $1513,1351,1314 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.27(3 \mathrm{H}, \mathrm{s}), 3.96$ $(3 \mathrm{H}, \mathrm{s}), 5.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz})$, $7.02-7.08(2 \mathrm{H}, \mathrm{m}), 7.49-7.59(3 \mathrm{H}, \mathrm{m}), 7.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9$, $2.0 \mathrm{~Hz}), 8.22(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 51.9$, 56.1, 74.5, 81.0, 111.9, 115.7, 120.5, 123.4, 127.3, 131.7, 133.4, 143.6, 147.9, 158.9, 165.7, 169.0. Anal. Cal cd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 60.67; H, 4.53; N, 7.86. Found: C, 60.74; H, 4.58; N, 7.81 .

Methyl (4S,5S)-2-(3,4,5-trimethoxyphenyl)-5-(p-nitro-phenyl)-cis-2-oxazoline-4-carboxylate (cis-3c): pale yellow solid (benzene-hexane); mp 191.0-193.9 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1728, 1637, 1520, 1340, $1308 \mathrm{~cm}^{-1}$; 1 H NMR (CDCl_{3}) $\delta 3.28(3 \mathrm{H}, \mathrm{s})$, $3.92(9 \mathrm{H}, \mathrm{s}), 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 6.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9$ $\mathrm{Hz}), 7.33(2 \mathrm{H}, \mathrm{s}), 7.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 8.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 51.9,56.3,60.9,74.1,81.7,105.9$, $123.4,123.5,127.2,129.8,143.1,147.9,153.1,166.2,168.9$. A satisfactory analytical result was not obtained due to the instability of cis-3c.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(p-chlorophen-yl)-cis-2-oxazoline-4-carboxylate (cis-4b): pal eyellow viscous oil; $[\alpha]^{22}{ }_{\mathrm{D}}=+258.7^{\circ}$ (c $0.34, \mathrm{CHCl}_{3}$), 87% ee; IR (neat) $1749,1647 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.27(3 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s})$, $5.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 7.01-$ $7.05(2 \mathrm{H}, \mathrm{m}), 7.310(2 \mathrm{H}, \mathrm{s}), 7.314(2 \mathrm{H}, \mathrm{s}), 7.47-7.50(1 \mathrm{H}, \mathrm{m})$, $7.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,2.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 51.8,56.1$, $74.3,81.5,111.9,116.1,120.4,127.8,128.4,131.7,133.2,134.4$, 134.8, 158.9, 165.7, 169.3; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{Cl}$ $\left(\mathrm{M}^{+}\right) 345.0769$, found 345.0785 .

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(p-cyanophenyl)-cis-2-oxazoline-4-carboxylate (cis-5b): white amorphous solid; $[\alpha]^{22} \mathrm{D}=+234.3^{\circ}\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right)$, 76% ee; IR (KBr) 2228, $1748,1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.26(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s})$, $5.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 7.02-$ $7.07(2 \mathrm{H}, \mathrm{m}), 7.48-7.55(3 \mathrm{H}, \mathrm{m}), 7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.22$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,2.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 51.9,56.1,74.4$, 81.2, 111.9, 112.4, 115.7, 118.4, 120.4, 127.1, 131.7, 132.0, 133.4, 141.6, 158.9, 165.6, 169.0; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 336.1112$, found 336.1120.

Methyl (4S,5S)-2-(3,4,5-trimethoxyphenyl)-5-(p-cyano-phenyl)-cis-2-oxazoline-4-carboxylate (cis-5c): yellow amorphous; IR (KBr) 2229, 1745, $1649 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $3.27(3 \mathrm{H}, \mathrm{s}), 3.92(9 \mathrm{H}, \mathrm{s}), 5.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.95(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 7.32(2, \mathrm{~s}), 7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.66(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}$). A satisfactory analytical result was not obtained due to instability of cis-5c.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(p-tolyl)-cis-2-oxazoline-4-carboxylate (cis-6b): yellow viscous oil; $[\alpha]^{22}$ D $=+138.4^{\circ}$ (c $0.52, \mathrm{CHCl}_{3}$), 84% ee; IR (neat) $1750,1646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.33(3 \mathrm{H}, \mathrm{s}), 3.24(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 5.31$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 6.99-7.04$ $(2 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz})$,
$7.45-7.51(1 \mathrm{H}, \mathrm{m}), 7.90(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.6,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 21.1, 51.6, 74.4, 82.2, 111.8, 116.4, 120.3, 126.3, 128.8, 131.7, 133.0, 133.1, 138.3, 158.9, 165.7, 169.7; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$ 325.1315, found 325.1337.
Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(p-methoxy-phenyl)-cis-2-oxazoline-4-carboxylate (cis-7b): yellow viscous oil; $[\alpha]^{22} \mathrm{D}=+138.4^{\circ}\left(\mathrm{c} 0.52, \mathrm{CHCl}_{3}\right), 89 \%$ ee; IR (neat) $1741,1637 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.28(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s})$, $3.94(3 \mathrm{H}, \mathrm{s}), 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9$ $\mathrm{Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 6.99-7.04(2 \mathrm{H}, \mathrm{m}), 7.26(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.9 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9$, $1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 51.7,55.2,56.1,74.3,82.1,111.8$, $113.6,116.4,120.3,127.8,131.7,132.3,133.0,158.9,159.7$, 165.7, 169.7; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 341.1264$ found 341.1236.

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-(m-nitrophenyl)-cis-2-oxazoline-4-carboxylate (cis-8a): colorless needles (benzene-hexane); mp $107.5-109.8^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+199.5^{\circ}$ (C $0.51, \mathrm{CHCl}_{3}$), 78% ee after recrystallization; IR (KBr) 1733, $1660,1548,1312 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.28(3 \mathrm{H}, \mathrm{s}), 3.89$ $(3 \mathrm{H}, \mathrm{s}), 5.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz})$, $6.98(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.9,2.0 \mathrm{~Hz}), 7.51-7.57(1 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.9 \mathrm{~Hz}), 8.04(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.9,2.0 \mathrm{~Hz}), 8.19(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 51.9,55.5,74.2,81.4,114.0,118.7,121.4,123.5$, 129.4, 130.7, 132.2, 138.5, 148.1, 163.0, 166.3, 169.2. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 60.67; H, 4.53; $\mathrm{N}, 7.86$. Found: C, 60.69; H, 4.58; N, 7.81.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(m-nitrophenyl)-cis-2-oxazoline-4-carboxylate (cis-8b): col orless needles (benzene-hexane); mp $115.2-117.3^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+254.1^{\circ}$ (C $0.51, \mathrm{CHCl}_{3}$), >98\% ee after recrystallization; IR (KBr) 1741, $1648,1494,1342,1318 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.27(3 \mathrm{H}, \mathrm{s})$, $3.99(3 \mathrm{H}, \mathrm{s}), 5.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 6.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9$ $\mathrm{Hz}), 7.01-7.07(2 \mathrm{H}, \mathrm{m}), 7.49-7.57(2 \mathrm{H}, \mathrm{m}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.6 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 8.19(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.9,1.0 \mathrm{~Hz})$, $8.37(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 51.9,56.1,74.3,81.1,111.8$, 115.9, 120.5, 121.6, 123.5, 129.2, 131.7, 132.4, 133.3, 138.7, 148.2, 158.9, 166.0, 169.0. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 60.67; H, 4.53; 7.86. Found: C, 60.89; H, 4.62; N, 7.86.

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-(m-chlorophen-yl)-cis-2-oxazoline-4-carboxylate (cis-9a): col orless needles (benzene-hexane); $m p 87.5-89.8^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}=+202.2^{\circ}$ (c 0.51 , CHCl_{3}), 78% ee after recrystallization; IR (KBr) 1739, 1656 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.30(3 \mathrm{H}, \mathrm{s}), 3.88$ (3H, s), $5.27(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $8.9,2.0 \mathrm{~Hz}), 7.15-7.30(4 \mathrm{H}, \mathrm{m}), 8.03(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.9,2.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 51.8,55.5,74.1,81.9,113.9,119.0,124.5$, $126.4,128.7,129.6,130.6,134.3,138.2,162.8,166.3,169.4$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{Cl}: \mathrm{C}, 62.52 ; \mathrm{H}, 4.66 ; \mathrm{N}, 4.05$. Found: C, 62.65; H, 4.68; 4.04.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(m-chlorophen-yl)-cis-2-oxazoline-4-carboxylate (cis-9b): col orless needles (benzene-hexane); $\mathrm{mp} 86.8-89.8^{\circ} \mathrm{C} ;[\alpha]^{55} \mathrm{D}=+214.9^{\circ}$ (c 0.51 , $\left.\mathrm{CHCl}_{3}\right),>98 \%$ ee after recrystallization; IR (KBr) 1741, 1648 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.29(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 7.01-7.05(2 \mathrm{H}, \mathrm{m})$, $7.22-7.31(3 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{s}), 7.50(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3,7.6$, $1.7 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 51.8, 56.0, 74.4, 81.5, 111.8, 116.2, 120.4, 124.6, 126.6, 128.6, 129.4, 124.6, 126.6, 128.6, 129.4, 131.7, 133.1, 134.3, 138.3, 158.9, 165.8, 169.2. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{Cl}: \mathrm{C}, 62.52$; H, 4.66; N, 4.05. Found: C, 62.51; H, 4.66; N, 4.05.

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-(m-tolyl)-cis-ox-azoline-4-carboxylate (cis-10a): col orless prisms (benzenehexane); $\mathrm{mp} 86.4-88.9^{\circ} \mathrm{C} ;[\alpha]^{24} \mathrm{D}=+149.9^{\circ}\left(\mathrm{c} 0.49, \mathrm{CHCl}_{3}\right)$, 64% ee after recrystallization; IR (KBr) 1754, $1642 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.33(3 \mathrm{H}, \mathrm{s}), 3.24(3 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}, \mathrm{s}), 5.26$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{dt}$, J = 8.9, 2.0 Hz), $7.06-7.12(3 \mathrm{H}, \mathrm{m}), 7.19-7.25(1 \mathrm{H}, \mathrm{m}), 8.04$ $(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.9,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.4,51.6,55.4$, 74.1, 82.9, 113.9, 119.4, 123.4, 126.9, 128.1, 129.4, 130.6, 136.0, 138.0, 162.7, 166.5, 169.8. Anal. Cal cd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 70.14; H, 5.89; N, 4.30. Found: C, 70.35; H, 5.95; N, 4.32.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(m-tolyl)-cis-2-oxazoline-4-carboxylate (cis-10b): yellow viscous oil; $[\alpha]^{20}{ }_{D}$
$=+155.3^{\circ} \mathrm{C}\left(\mathrm{c} 2.35, \mathrm{CHCl}_{3}\right)$; IR (neat) 1750, $1645 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}) $\delta 2.34(3 \mathrm{H}, \mathrm{s}), 3.24(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 5.32$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 7.00-7.10$ $(2 \mathrm{H}, \mathrm{m}), 7.12-7.23(4 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.9,5.6,1.7$ $\mathrm{Hz}), 7.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} N M \mathrm{R}\left(\mathrm{CDCl}_{3}\right) \delta 21.4$, $51.6,56.1,74.5,82.3,111.8,116.4,120.3,123.2,123.5,128.1$, 131.7, 133.0, 137.8, 158.9, 165.8, 169.0. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19}{ }^{-}$ NO_{4} : C, 70.14; H, 5.89; N, 4.30. Found: C, 70.14; H, 5.90; N, 4.26.

Methyl (4S,5S)-2-(p-methoxyphenyl)-5-(m-methoxy-phenyl)-cis-2-oxazoline-4-carboxylate (cis-11a): col orless needles (benzene-hexane); mp 118.0-120.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{22} \mathrm{D}=$ $+205.9^{\circ}$ (c $0.51, \mathrm{CHCl}_{3}$), 80\% ee after recrystallization; IR (KBr) 1751, $1645 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.28(3 \mathrm{H}, \mathrm{s}), 3.78$ $(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 5.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=10.6 \mathrm{~Hz}), 6.83-6.93(3 \mathrm{H}, \mathrm{m}), 6.96(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.25$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}), 8.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 51.8,55.3,55.4,74.1,82.7,111.8,113.8,114.2,118.7,119.3$, 129.3, 130.6, 137.6, 159.5, 162.7, 166.4, 169.7. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}: \mathrm{C}, 66.85 ; \mathrm{H}, 5.61 ; \mathrm{N}, 4.10$. Found: C, 66.89 ; H, 5.63; N, 4.08.

Methyl (4S,5S)-2-(o-methoxyphenyl)-5-(m-methoxy-phenyl)-cis-2-oxazoline-4-carboxylate (cis-11b): pale yellow viscous oil; $[\alpha]^{23}{ }_{\mathrm{D}}=+199.2^{\circ}$ (c $0.88, \mathrm{CHCl}_{3}$), 90% ee; IR (neat) 1747, $1643 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.27(3 \mathrm{H}, \mathrm{s}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s}), 5.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=10.9 \mathrm{~Hz}), 6.82-7.05(5 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.45-$ $7.52(1 \mathrm{H}, \mathrm{m}), 7.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 51.7,55.3,56.1,74.4,82.1,111.8,111.9,114.1,116.3,118.8$, $120.3,129.2,131.7,133.0,137.7,158.9,159.5,165.8,169.6$. Anal. Cal cd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 66.85; H, 5.61; N, 4.10. Found: C, 66.70; H, 5.61; 3.94.
Although a small amount of trans products could not be isolated purely or did not give satisfactry analytical data after separation by chromatograpy, these products could be characterized by ${ }^{1} \mathrm{H}$ NMR.

Methyl 2-(o-methoxyphenyl)-5-phenyl-trans-2-oxazo-line-4-carboxylate (trans-2b): pale yellow viscous oil; IR (KBr) 1739, 1628, 1599, 1465, 1437, 1348, 1259, 1124, 1095, 1042 , and $751 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.85(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}$, s), $4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.98-$ $7.03(2 \mathrm{H}, \mathrm{m}), 7.34-7.51(6 \mathrm{H}, \mathrm{m}), 7.86-7.89(1 \mathrm{H}, \mathrm{m})$.
Methyl 2-(3,4,5-trimethoxyphenyl)-5-phenyl-trans-2-oxazoline-4-carboxylate (trans-2c): pale yellow viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.86(3 \mathrm{H}, \mathrm{s}), 3.91(9 \mathrm{H}, \mathrm{s}), 4.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.6 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{s}), 7.36-7.42(5 \mathrm{H}$, $\mathrm{m})$.
Methyl 2-(2,6-dimethoxyphenyl)-5-phenyl-trans-2-ox-azoline-4-carboxylate (trans-2d): colorless viscous oil; IR (KBr) 1741, 1664, 1595, 1477, 1435, 1306, 1257, 1223, 1174, 1113, 1055, 1030, 982, 729, and $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $3.86(9 \mathrm{H}, \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz})$, 7.31-7.53 (8H, m).

Methyl 2-(o-methoxyphenyl)-5-(p-nitrophenyl)-trans-2-oxazoline-4-carboxylate (trans-3b): yellow viscous oil; IR (neat) 2949, 2841, 1736, 1639, 1602, 1519, 1492, 1464, 1435, 1347, 1259, 1181, 1123, 1043, 1020, 885, $755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.89(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz})$, $5.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.00-7.06(2 \mathrm{H}, \mathrm{m}), 7.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.6 \mathrm{~Hz}), 7.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,1.7$ $\mathrm{Hz}), 8.26(2 \mathrm{H}, \mathrm{d}, \mathrm{j}=8.9 \mathrm{~Hz})$.
Methyl 2-(3,4,5-trimethoxyphenyl)-5-(p-nitrophenyl)-trans-2-oxazoline-4-carboxylate (trans-3c): yellow solid; IR (KBr) 2941, 1717, 1652, 1588, 1557, 1523, 1504, 1464, 1417, $1366,1348,1286,1249,1234,1173,1129,1099,1005,847,741$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.90(3 \mathrm{H}, \mathrm{s}), 3.92(9 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{s}), 7.58(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$.

Methyl 2-(o-methoxyphenyl)-5-(p-chlorophenyl)-trans-2-oxazoline-4-carboxylate (trans-4b): pale yellow viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.85(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 4.78(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.6 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.99-7.04(2 \mathrm{H}, \mathrm{m}), 7.37$ $(4 \mathrm{H}, \mathrm{s}), 7.45-7.51(1 \mathrm{H}, \mathrm{m}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz})$.
Methyl 2-(o-methoxyphenyl)-5-(p-cyanophenyl)-trans-2-oxazoline-4-carboxylate (trans-5b): pale yellow viscous
oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.88(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.72(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.6 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.92-7.09(2 \mathrm{H}, \mathrm{m}), 7.42-$ $7.73(5 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$.

Methyl 2-(3,4,5-trimethoxyphenyl)-5-(p-cyanophenyl)-trans-2-oxazoline-4-carboxylate (trans-5c): pale yellow solid; IR (KBr) 2947, 2228, 1731, 1645, 1588, 1506, 1468, 1442, $1416,1376,1346,1232,1183,1133,1098,1006,992,851 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.89(3 \mathrm{H}, \mathrm{s}), 3.92(9 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.6 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{s}), 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.3 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$.

Methyl 2-(o-methoxyphenyl)-5-(p-tolyl)-trans-2-oxazo-line-4-carboxylate (trans-6b): pale yellow viscous oil; IR (neat) 2949, 1738, 1636, 1601, 1580, 1515, 1495, 1463, 1435, 1324, 1261, 1181, 1123, 1081, 1044, 1022, 983, 917, 757, 732 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.36(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}$, s), $4.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.97-$ $7.02(2 \mathrm{H}, \mathrm{m}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J})=7.9$ $\mathrm{Hz}), 7.43-7.50(1 \mathrm{H}, \mathrm{m}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,2.0 \mathrm{~Hz})$.

Methyl 2-(o-methoxyphenyl)-5-(p-methoxyphenyl)-trans-2-oxazoline-4-carboxylate (trans-7b): yellow viscous oil; IR (neat) 2951, 1741, 1637, 1582, 1514, 1493, 1462, 1435, 1327, 1251, 1178, 1123, 1081, 1042, 982, 832, $757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.81(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.83$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.9 \mathrm{~Hz}), 6.97-7.00(2 \mathrm{H}, \mathrm{m}), 7.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.46(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz})$.

Methyl 2-(p-methoxyphenyl)-5-(m-nitrophenyl)-trans-2-oxazoline-4-carboxylate (trans-8a): yellow viscous oil; IR (neat) 2952, 1735, 1637, 1608, 1576, 1526, 1509, 1480, 1457, 1436, 1421, 1350, 1256, 1207, 1171, 1080, 1027, 842, 738, 686 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.88(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}), 4.77(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.0$, $2.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 8.02$ $(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.9,2.0 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.9,2.3,1.0 \mathrm{~Hz})$, $8.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz})$.

Methyl 2-(o-methoxyphenyl)-5-(m-nitrophenyl)-trans-2-oxazoline-4-carboxylate (trans-8b): pale yellow viscous oil; IR (neat) 2951, 1735, 1639, 1601, 1581, 1528, 1490, 1464, $1435,1351,1317,1251,1180,1123,1078,1043,1021,994,757$, $733,695 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.90(3 \mathrm{H}, \mathrm{s}), 3.99(3 \mathrm{H}, \mathrm{s})$, $4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.00-7.06$ $(2 \mathrm{H}, \mathrm{m}), 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.77$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.3 \mathrm{~Hz}), 8.43(1 \mathrm{H}, \mathrm{s})$.

Methyl 2-(p-methoxypheny)-5-(m-chlorophenyl)-trans-2-oxazoline-4-carboxylate (trans-9a): pale yellow viscous oil; IR (neat) 2950, 1734, 1636, 1608, 1575, 1510, 1476, 1457, $1435,1421,1309,1256,1204,1170,1080,1027,1009,990,841$, 789, $741,691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.87(6 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.6$ $\mathrm{Hz}), 7.26-7.37(4 \mathrm{H}, \mathrm{m}), 8.01(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.6 \mathrm{~Hz})$.

Methyl 2-(o-methoxyphenyl)-5-(m-chlorophenyl)-trans-2-oxazoline-4-carboxylate (trans-9b): pale yellow viscous oil; IR (neat) 2950, 1739, 1637, 1600, 1575, 1492, 1464, 1434, $1259,1224,1205,1181,1123,1080,1043,1023,990,789,755$, $694 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.87(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.78$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 6.99-7.04(2 \mathrm{H}$, $\mathrm{m}), 7.27-7.34(3 \mathrm{H}, \mathrm{m}), 7.46-7.52(2 \mathrm{H}, \mathrm{m}), 7.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $7.9,2.0 \mathrm{~Hz}$).

Methyl 2-(p-methoxyphenyl)-5-(m-tolyl)-trans-2-oxazo-line-4-carboxylate (trans-10a): pale yellow viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.36(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 4.78$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.94(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $8.9,2.0 \mathrm{~Hz}), 7.14-7.30(4 \mathrm{H}, \mathrm{m}), 8.01(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.9,2.0 \mathrm{~Hz})$.

Methyl 2-(o-methoxypheny)-5-(m-tolyl)-trans-2-oxazo-line-4-carboxylate (trans-10b): yellow viscous oil; IR (neat) 2949, 1740, 1637, 1601, 1579, 1491, 1462, 1435, 1366, 1320, 1261, 1180, 1123, 1081, 1044, 1022, 984, 792, 757, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.37(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 4.83$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.98-7.03(2 \mathrm{H}$, m), $7.14-7.30(4 \mathrm{H}, \mathrm{m}), 7.47(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.9,5.6,2.0 \mathrm{~Hz})$, $7.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,2.0 \mathrm{~Hz})$.

Methyl 2-(p-methoxyphenyl)-5-(m-methoxyphenyl)-trans-2-oxazoline-4-carboxylate (trans-11a): pale yellow viscous oil; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.81(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.87$ $(3 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz})$, $6.86-6.98(5 \mathrm{H}, \mathrm{m}), 7.26-7.31(1 \mathrm{H}, \mathrm{m}), 8.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz})$.

Methyl 2-(o-methoxyphenyl)-5-(m-methoxyphenyl)-trans-2-oxazoline-4-carboxylate (trans-11b): pale yellow viscous oil; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.81(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.93$ $(3 \mathrm{H}, \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{hz}), 6.86-$ 7.50 ($7 \mathrm{H}, \mathrm{m}$), $7.81-7.89(1 \mathrm{H}, \mathrm{m})$.

Conversion of 2-Oxazoline cis-2a to threo-Phenylserin. A solution of 2-oxazoline cis-2a ($0.162 \mathrm{~g}, 0.520 \mathrm{mmol}$) and triethylamine ($1.05 \mathrm{~g}, 1.45 \mathrm{~mL}, 10.4 \mathrm{mmol}$) in MeCN was heated under reflux for 45 h . After the solvent was removed under reduced pressure, the residue was chromatographed over silica gel using hexanes-ethyl acetate ($9: 1 \mathrm{vol} / \mathrm{vol}$) as eluent to give 2-oxazol ine trans-2a ($0.118 \mathrm{~g}, 73 \%, 70 \%$ ee by HPLC analysis). A solution of the resulting trans-2a (0.116 g , $0.373 \mathrm{mmol})$ in concentrated $\mathrm{HCl}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 6 h and in 6 M HCl at $80^{\circ} \mathrm{C}$ for 14 h and then $100^{\circ} \mathrm{C}$ for 5 h . After extraction of the mixture with ethyl acetate (30 mL), the water layer was evaporated in vacuo. The residue was treated through Amberlite IRA-120B $\left(\mathrm{H}^{+}\right)$to give threo-phenylserin ($0.034 \mathrm{mg}, 50 \%,[\alpha]^{18} \mathrm{D}=+29.9^{\circ}$ (c 2.0, $6 \mathrm{NHCl})$).

Acknowledgment. We gratefully acknowledge the assistance of Mr. T. Tomita of Mitsubishi Gas Chemical Corp. and the generous supply of chiral BINOL. The authors are gratful to Mr. Hiroshi Moriguchi, Faculty of Engineering, Osaka University, for obtaining mass spectra. Those works were supported by a Grant-in-Aid for Science Research (No. 07740499) from the Ministry of Education, Science and Culture, J apan. We also wish to express special thanks to Professor Akikazu Kakehi and Professor Suketaka Ito (Shinshu University) for useful comments and suggestions.

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new cis-2-oxazoline-4-carboxylates. This material is available free of charge via the Internet at http://pubs.acs.org.
J O990525D

[^0]: ${ }^{\dagger}$ Shinshu University
 \# Osaka University.
 (1) F or a review of the syntheses of 2-oxazoline-4-carboxylates using isocyanoacetates and conversion to β-hydroxyamino acid, see: Matsumoto, K.; Moriya, T.; Suzuki, M. J. Synth. Org. Chem. J pn. 1985, 43, 7664.
 (2) (a) Hoppe, D.; Schöllkopphf, U. J ustus Liebigs Ann. Chem. 1972, 763, 1. (b) M atsumoto, K.; Urabe, Y.; Ozaki, Y.; I wasaki, T.; M iyoshi, M. Agric. Biol. Chem. 1975, 39, 1869. (c) Matsumoto, K.; Ozaki, Y.; Suzuki, M.; Miyoshi, M. Agric. Biol. Chem. 1976, 40, 2045. (d) Ozaki, Y.; Matsumoto, K.; Miyoshi, M. Agric. Biol. Chem. 1978, 42, 1565.
 (3) (a) Ito, Y.; Sawamura, M.; Hayashi, T. J . Am. Chem. Soc. 1986, 108, 6405. (b) Ito, Y.; Sawamura, M.; Hayashi, T. Tetrahedron Lett. 1987, 28, 6215; 1988, 29, 239. (c) Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi, T. Tetrahedron Lett. 1988, 29, 235. (d) Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi, T. Tetrahedron 1988, 44, 5253.

[^1]: (4) (a) K aneko, T.; K atsura, H. Bull. Chem. Soc. J pn. 1963, 36, 899. (b) Seebach, D.; Aebi, J. D. Tetrahedron Lett. 1983, 24, 3311. (c) Gou, D.-M.; Lui, Y.-C.; Chen, C.-S. J. Org. Chem. 1993, 58, 1287. (d) Kingston, D. G.; Chaudhary, A. G.; Gunatilaka, A. A. L.; Middleton, M. L. Tetrahedron Lett. 1994, 35, 4483.
 (5) Gold(I)-catalyzed asymmetric aldol reaction of methy isocyanoacetate with penta- and tetrafluorobenzal dehydes showed cis selectivity (cis/trans $=63: 37-62: 38$) with high enentioselectivity ($86-90 \%$ ee): Soloshonok, V. A.; Hayashi, T. Tetrahedron Lett. 1994, 35, 2713.
 (6) (a) Suga, H.; Shi, X.; Fujieda, H.; Ibata, T. Tetrahedron Lett. 1991, 32, 6911. (b) Suga, H.; Shi, X.; I bata, T. J . Org. Chem. 1993, 58, 7397.
 (7) Suga, H.; Fujieda, H.; Hirotsu, Y.; I bata, T. J . Org. Chem. 1994, 59, 3359.
 (8) Part of the present work has been presented as a communication letter: Suga, H.; I kai, K.; Ibata, T. Tetrahedron Lett. 1998, 39, 869.

[^2]: (9) In the case of $\mathbf{1 b}$, the reaction using 2 equiv of the catalyst (-10 ${ }^{\circ} \mathrm{C}$, $168 \mathrm{~h}, 35 \%$ yield) gave unsatisfactory results in terms of stereoselcetivity (cis/trans $=49: 51$) and enantioselectivity (cis: 62\% ee) probably due to decomposition and epimerization of the product under the reaction conditions. In the presence of $20 \mathrm{~mol} \%$ of the catalyst ($\mathrm{M} \mathrm{e}_{3} \mathrm{Al} /(\mathrm{R})$-BINOL $=1: 1.05$), the reaction ($5{ }^{\circ} \mathrm{C}, 45 \mathrm{~h}$) did not complete (61\% yield, recovered 1b: 31\%) and showed low selectivity (cis/trans = 79:21, cis: 63\% ee).

[^3]: (10) (a) Maruoka, K.; Itoh, T.; Shirasaka, T.; Y amamoto, H. J. Am. Chem. Soc. 1988, 110, 310. (b) Maruoka, K.; Itoh, T.; Araki, Y.; Shirasaka, T.; Yamamoto, H. Bull. Chem. Soc. J pn. 1988, 61, 2975. (c) Maruoka, K.; Y amamoto, H. J. Am. Chem. Soc. 1989, 111, 789. (d) Marioka K.; Banno, H.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 7791.
 (11) This may be attributable to the concomitant formation of minor trans-oxazolines by Lewis acid-promoted isomerization of cis-oxazolines through a ring-opening-recyclization pathway involving racemization of the 4 - and 5-positions.

[^4]: (12) L-(-)-threo- β-Phenylserine: $[\alpha]^{18} \mathrm{D}=-50.2 \pm 2^{\circ}(\mathrm{c} 2.0,6 \mathrm{~N} \mathrm{HCl})$. Vogler, K. Helv. Chim. Acta 1950, 33, 2111.
 (13) (a) I bata, T.; I sogami, Y.; Nakano, S.; Tamura, H. J . Chem. Soc., Chem. Commun. 1986, 1692. (b) Ibata, T.; Isogami, Y.; Nakawa, H.; Tamura, H.; Suga, H.; Shi, X.; Fujieda, H. Bull. Chem. Soc. J pn. 1992, 65, 1771.
 (14) (a) I bata, T.; Isogami, Y.; Tamura, H. Chem. Lett. 1988, 1551. (b) Ibata, T.; Suga, H.; Isogami, Y.; Tamura, H.; Shi, X. Bull. Chem. Soc. Jpn. 1992, 65, 2998.
 (15) (a) Suga, H.; Ibata, T. Chem. Lett. 1991, 1221. (b) Suga, H.; Shi, X.; I bata, T. Bull. Chem. Soc. J pn. 1998, 71, 1231.
 (16) Suga, H.; Shi, X.; Ibata, T. Chem. Lett. 1994, 1673.

[^5]: (17) Grifanti, M.; Sein, M . L. Ann. Chim. (Rome) 1965, 55, 578.

